Introduction to water cooling technology
Water cooling is a method of heat removal from components and industrial equipment. Evaporative cooling using water is often more efficient than air cooling. Water is inexpensive and non-toxic; however, it can contain impurities and cause corrosion.
Water cooling is commonly used for cooling automobile internal combustion engines and power stations. Water coolers utilising convective heat transfer are used inside high-end personal computers to lower the temperature of CPUs.
Other uses include the cooling of lubricant oil in pumps; for cooling purposes in heat exchangers; for cooling buildings in HVAC and in chillers.
Water cooling technology advantages
Water is inexpensive, non-toxic, and available over most of the earth's surface. Liquid cooling offers higher thermal conductivity than air cooling. Water has unusually high specific heat capacity among commonly available liquids at room temperature and atmospheric pressure allowing efficient heat transfer over distance with low rates of mass transfer. Cooling water may be recycled through a recirculating system or used in a single pass once-through cooling (OTC) system. Water's high enthalpy of vaporization allows the option of efficient evaporative cooling to remove waste heat in cooling towers or cooling ponds.[1] Recirculating systems may be open if they rely upon evaporative cooling or closed if heat removal is accomplished in heat exchangers with negligible evaporative loss. A heat exchanger or condenser may separate non-contact cooling water from a fluid being cooled,[2] or contact cooling water may directly impinge on items like saw blades where phase difference allows easy separation. Environmental regulations emphasize the reduced concentrations of waste products in non-contact cooling water.
Liquid cooling techniques are increasingly being used for the thermal management of electronic components. This type of cooling is a solution to ensure the optimisation of energy efficiency while simultaneously minimising noise and space requirements. Especially useful in supercomputers or Data Centers as maintenance of the racks is quick and easy. After disassembly of the rack, advanced technology quick release couplings eliminate spillage for the safety of operators and protects the integrity of fluids (no impurities in the circuits).